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Abstract

Shape coexistence, shape evolution, and ground state properties such as; bind-

ing energy, two neutron separation energy, proton and neutron radii in the Ge

and Se isotopic chains are studied within the frame work of relativistic-Hartree-

Bogoliubov using density-dependent zero and finite range, and non-linear NN

interactions.

A systematic investigation of the ground state shape is performed for Ge isotopes

(Z = 32, 34 ≤ N ≤ 62) and Se isotopes (Z = 34, 34 ≤ N ≤ 62). The ground

state shape is found to be both oblate and prolate 66Ge and spherical and oblate

for 72Ge. The rest of the isotopic chain has only one minimum and in some ceases

it is found to be triaxial. A sudden change in the nuclear shape is observed for

70,72,74Ge isotopes.

For the Se isotopes the existing of two different shapes in the ground state is better

seen as compared with Ge isotopes. It is clearly seen at the neutron rich side of the

isotopic chain, and in the neutron deficient side of the chain one can see oblate-

prolate and prolate-spherical shape transition. Our calculations is independent

of the choice of parametrization, as we get similar results with both NL3*, and

DD-PC1.

The physical properties: Binding energy, two neutron energy, neutron, proton,

and charge radii are studied as a function of mass number or neutron number.

In general a smooth change in these properties is found, except near N = 50

one can see a sharp change, which reflect the sudden change in the ground state

deformation in the neighboring nuclei.

Our calculations shows a reasonable agreement with experimental data, and the

results obtained with IBM based on Gogny density functional with D1M force.
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Chapter 1

Introduction

In many mass regions through out the nuclear chart the nucleus in the ground

state take different shapes at the same energy level, this phenomena is called shape

coexistence[1–6]. Shape coexistence has become very important measure to explain

the stability of the nucleus into a spherical shape, and the strong correlations

(quadrupole) that characteristic the nucleus into a deformed shapes in around mid-

shell regions. This region has become an important new testing ground for many

types of nuclear structure models because of the richness of different collective

motions and structures which are found in this region [7–9].

The shape coexistence can be studied experimentally and theoretically through dif-

ferent techniques and nuclear models such as complete spectroscopy and coulomb

excitation, interacting bosons model (IBM), relativistic and non relativistic mod-

els using Hartree-Fock-Bogolibov (HFB) and self-consistent Hartree-Fock (HF)

models [10–20].

The Coulomb excitation is a technique in experimental nuclear physics used to

study the nuclear structure, where a nucleus is excited by an inelastic collision with
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another nucleus through the electromagnetic interaction, and it allows measuring

electromagnetic moments that related to the nuclear shape directly [21, 22]. If

the electromagnetic moments has a positive value, then the shape is a prolate,

and when it has a negative value, then the shape is an oblate. Spectroscopy and

coulomb excitation have been used to probe shells and shape evolution far from

stability for light nuclei [23]. They have been used to determine the energies

of excited states of nuclei, their spins, and the probabilities of electromagnetic

transitions. In addition, it has been possible to measure the electrical quadrupole

moment of the nucleus by measuring the angular distribution of the gamma quanta

in a magnetic field, also it used to measure the dipole magnetic moment of the

excited nucleus [24–26].

In the interacting boson model (IBM) [27] the nucleons (protons or neutrons)

pair up, essentially behaving like a single particle with boson properties. It was

introduced in 1974 to describe collective properties of nuclei. Since 1974, the

model has been used in many investigations and it has been extended to cover

most nuclear structure, so it has can be used to predict vibrational and rotational

modes of non - spherical nuclei [28, 29]. The basic assumption of interacting boson

model that the nucleon pairs are represented by bosons with angular momenta L

= 0 or 2. The pair with angular momentum 0 are called s-bosons, those with

angular momentum 2 are called d-bosons [30, 31].

Nuclear structure models based on the mean field approximation have been suc-

cessfully used to study the ground-state properties of nuclei all over the nuclear
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chart. The mean field approximation based on non-relativistic and relativistic re-

alization self - consistent Hartree-Fock (HF) and Hartree-Fock-Bogolibov (HFB)

models, and the mean field approximation based on effective interaction, a zero-

range skyrme force, finite range Gongy force [32, 33].

In the Hartree-Fock approach, the starting point is a Hamiltonian containing ki-

netic energy term, and potential term, and the wave function of the system can

be written as a Slater determinant of one - particle spin - orbitals. Then the com-

ponents of this Slater determinant (individual wave functions of the nucleons) are

determined. To this end, it is assumed that the total wave function (the Slater

determinant) is such that the energy is minimum [34, 35].

The relativistic Hartree-Fock-Bogolibov (RHFB) equations are solved by expand-

ing the different components of the quasi-particle spinors in the complete set of

eigne-solutions of the dirac equations with Woods-Saxon potentials [36]. In this

model nucleons interact by exchange of virtual particles such as mesons. Then

to solve the problem by this model, first, build the lagrangian containing these

interaction terms. Second, gets a set of equations of motion. The nucleons obey

the dirac equation, while the mesons obey the klein-Gordon equation [37].

All theses previous techniques and models was successfully applied to the study

of shape evolution and shape coexistence. In 2007, J.Ljungvall, et al, investigated

shape coexistence by Coloumb spectroscopy of 66Se [38], and their results support

a favored oblate ground-state deformation in 66Se and 65As. In 2002, Yosuke

Toh studied the shape coexistence of Ge and Se with Complete Spectroscopy and
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Coulomb Excitation, by calculating the means of multiple Coulomb excitation,

and used it to determine the properties of the nuclear states [39].

Recently there have been studies on nuclear shape transitions and shape coex-

istence by IBM [40–43]. In 2014, J.E.Garcia-Ramos, K.Heyde, et al, studied the

Shape evolution and shape coexistence in Po isotopes chain using interacting boson

model with configuration mixing (IBM-CM) [44]. They obtained the IBM Hamil-

tonian and calculated excitation energies, B(E2)’s, electric quadrupole moments,

nuclear radii and isotopic shifts, quadrupole shape invariants, wave functions, and

deformations. Their results agrees with the experimental data for all the studied

observables [45].

In 2017, K.Nomura, et al, studied the shape transitions and shape coexistence in

the Ge and Se isotopes within the interacting boson model (IBM) with the mi-

croscopic input from a self-consistent mean-field calculation based on the Gogny

- D1M energy density functional, They discuses the potential energy surface, the

ground state properties, and the pairing energy for proton and neutron in Ge and

Se isotopes. The Gogny - D1M energy surfaces predict the coexistence between

the prolate and oblate shapes in the lightest nuclei in both isotopic chains. For

shapes around N = 40 coexistence between spherical and γ-soft (i.e. the energy

does not change with the value of gamma) shapes is observed, When neutron num-

ber increases towards the N = 50 shell closure weakly deformed prolate shapes are

obtained. On the other hand, for 52 6 N 6 62 a number of nuclei exhibiting γ-soft

shapes (which means the nucleus shape changed smoothly in isotopes chain) and

coexistence between prolate and oblate shapes are observed [46]. He also studied
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the shape evolution in Kr isotopes using the same models but with input coming

from a self-consistent mean-field calculation based on the Gogny energy density

functional and relativistic HFB with DD-PC1 and DD-ME2 parameterizations.

For neutron deficient isotopes there is no notable difference between both rela-

tivistic and collectivistic models. However, they provide different prediction for

neutron rich isotopes[47].

In 2007, Lu Guo, et al study the ground-state deformations of the Ge isotopes in

Hartree-Fock-Bogoliubov (HFB) used Gogny force. The deformations and binding

energies are calculated with good agreement with experimental data, also the Ge

isotopes take a triaxial shapes in most cases [48].

Also in 1997, S. K. Patra, et al, study the structural Properties of Ne, Mg, Si, S, Ar

and Ca Nuclei by relativistic mean field theory using three sets of force parameter,

the NL2, NL-SH and TM2. The ground state shapes (prolate, oblate or spherical)

are investigated for these nuclei, also the deformations of nuclei near the magic shell

N=28 are found to be large. Finally, A large number of cases of shape coexistence

are identified [49]. Moreover, in 2002, T. Niksic, et al investigate axially the ground

state shape in Hg and Pb nuclei in this model framework used NL3* effective

interaction, and the behave of shape with increasing neutron number exchange

from spherical into an oblate minimum, and a pronounced minimum develops on

the prolate in Hg isotopes, also in Pb isotopes with increasing neutron number,

however, the oblate minimum is lowered in energy and the nuclei 188−194Pb have

oblate ground states [50].
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In 2017, H Abusara, et al, investigated the shape within relativistic Hartree-Fock-

Bogoliubov (HFB) based on density - dependent zero and finite range NN inter-

actions for Kr ( Z= 36,34 6 N 6 64 ), Sr( Z=38, 34 6 N 6 64 ) and Zr (Z= 40,

48 6 N 6 70) isotopes [51]. The shape of ground state is smooth in Kr isotopes

while it is not smooth in Sr isotopes, and this is reflected on the physical pros-

perities of ground state such as binding energy, proton, neutron, charge radius in

these isotopes.

In 2017, H Abusara, et al, studied the shape coexistence and triaxiality softness

in Mo (Z= 42,52 6 N 6 68), and Ru ( Z= 44,52 6 N 6 68) isotopes within

Relativistic-Hartree-Bogoliubov (RHB) based on DD-ME2 and DD-PC1 parame-

terizations. Shape coexistence does not show up in Ru isotopes except in 104Ru, on

the other hand shape coexistence is a clear in Mo isotopes. Moreover, triaxiality

softness is clear in both chain isotopes [2].

In the present analysis, we will perform a systematic calculation to investigate

the shape coexistence in Ge and Se isotopes using the relativistic - Hartree -

Bogoliubov (RHB) using NL3*, DD-ME2, and DD-PC1 forces, and we will discuses

the binding, separation energies for neutrons. Then we will discuss the results

and compared it with other models such as interacting bosons model, and non-

relativistic Hartree - Bogoliubov based on Gogny-D1S [52].

This thesis is organized as follows: in CHAPTER 2 contains the formalism of

the model in the RHB formalism. In CHAPTER 3 and CHAPTER 4 potential

energy surfces and physical properties for the ground state for Ge and Se isotopes
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are presented, respectively. In CHAPTER 5 summary and main result will be

presented.
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Chapter 2

Formalism

2.1 Covariant Density Functional Theory

The Density functional is a tool for a microscopic description of nuclei. It

is successful in determining properties of nuclear ground states such as binding

energies, radii, or deformation parameters [53, 54]. Three type of models have

been developed to provide a relativistic density functional, the nonlinear meson

nucleon coupling model, the density-dependent meson nucleon coupling model, and

a density-dependent point coupling model. The main difference between them is

the treatment of the range of the interaction, the mesons, and density dependence.

The interaction in the first two classes has a finite range, while the third class uses

zero-range interaction [55–58].
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2.2 Lagrangian density

2.2.1 Lagrangian density in general

A classical relativistic field theory starts from a number of fields qj(x). Their

dynamics is determined through a Lagrangian density L(q, ∂µq, t) and the varia-

tional principle

Starting from classical Lagrangian density

δ

∫
∂4xL(q, ∂µq, t) = 0 (2.1)

∂µ(
∂L

∂(∂µqj)
)− (

∂L

∂qj
) = 0 (2.2)

from the following Lagrangian density

L = LNucleon + LMeson + Lint (2.3)

It contains free nucleons described by the Lagrangian density

LNucleon = ψ̄ (iγµ · ∂µ −m)ψ (2.4)
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where is m the mass of nucleons, and ψ is the Dirac spinor, so the Lagrangian

density for σ meson

Lσ =
1

2
(∂µσ∂

µσ −m2
σσ

2) (2.5)

The Lagrangian for π mesons

Lπ =
1

2
(∂µπ∂

µπ −m2
ππ

2) (2.6)

The Lagrangian for ω mesons

Lω = −1

2
(
1

2
ΩµνΩ

µν −m2
ωωµω

µ) (2.7)

The Lagrangian for ρ mesons

Lρ = −1

2
(
1

2
~Rµν

~Rµν −m2
ρρµρ

µ) (2.8)

The Lagrangian for photon

LA = −1

4
(~Fµν ~F

µν) (2.9)

Where the Ωµν , ~Rµν , and ~Fµν are the field tensors given by this is equations :

ωµν = ∂µΩν − ∂νωµ (2.10)



11

~Rµν = ∂µρν − ∂νρµ (2.11)

~Fµν = ∂µAν − ∂νAµ (2.12)

The interaction between the nucleons and the mesons described by given La-

grangian

Lint = −gσψ̄ψσ − gωψ̄γµψωµ − gρψ̄γµ~τψ~ρµ − eψ̄γµ(
1− τ3

2
)ψAµ (2.13)

2.2.2 The meson-exchange model

In the meson exchange model the nucleus is described as a system of point

like nucleons, Dirac spinors, coupled to mesons and to the photons. The nucleons

interact by the exchange of several mesons, namely a scalar meson s and three

vector particles,σ, ω, ρ, and the photon [59, 60]. These mesons are defined by three

quantum numbers; spin (J), parity (P) and isospin(T). Mesons that participate in

this interaction are [61] :

1. The isoscalar scalar σ meson, has quantum numbers (J = 0, T = 0 and P =

1),and the corresponding field is a scalar field produce attraction.

2. The isoscalar vector ω, has quantum numbers (J=1, T=0, P=-1), and the

corresponding field is a vector field produce the repulsion.
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3. The isovector vector ρ- meson, has quantum numbers (J=1,T=1, P=-1), and

it couple to the iso vector current.

Starting on a more fundamental level, one therefore introduces a relativistic La-

grangian describing point-like nucleons interacting through the exchange of differ-

ent types of mesons.

L = ψ̄ (γ(i∂µ − gωω − gρ~ρ~τ − eA)−m− gσσ)ψ

+
1

2
(∂σ)2 − 1

2
m2
σσ

2 − 1

4
ΩµνΩ

µν +
1

2
m2
ωω

2 (2.14)

−1

4
~Rµν

~Rµν +
1

2
m2
ρ~ρ

2 − 1

4
FµνF

µν

where ψ is the Dirac spinors described the nucleons, m the mass of mesons, and g

the coupling constant.

To treat the density dependence in this model Boguta and Bodmer replacing the

mass term by a quadratic a-potential of the form:

U(σ) =
1

2
m2
σσ

2 +
1

3
g2σ

3 +
1

4
g3σ

4 (2.15)

and the ω mesons, replacing the mass term by a quadratic a potential of the form

:

U(ωµ) =
1

2
m2
ωω

µωµ +
1

4
c3(ω

µωµ) (2.16)
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and the ρ mesons, replacing the mass term by a quadratic a potential of the form

:

U(~ρµ) =
1

2
m2
ρ~ρ
µ~ρµ +

1

4
c3(~ρ

µ~ρµ) (2.17)

The Lagrangian (2.14) contains as parameters the meson masses mσ, mω, and mρ

and the coupling constants gσ, gω, and gρ, and e is the charge of the protons and

it vanishes for neutrons.

The density-dependent meson-nucleon coupling model has an explicit density de-

pendence for the meson-nucleon vertices. The coupling constant dependence is

defined as:

gi(ρ) = gi(ρsat)fi(x) (2.18)

i can be any of the three mesons σ,ω, and ρ where the density dependence is given

by

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
. (2.19)

for σ and ω and by

fρ(x) = exp(−aρ(x− 1)). (2.20)

for the ρ meson.
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x is defined as the ratio between the baryonic density ρ at a specific location

and the baryonic density at saturation ρsat in symmetric nuclear matter. The

eight parameters are not independent, but constrained as follows: fi(1) = 1,

f
′′
σ (1) = f

′′
ω (1), and f

′′
i (0) = 0. These constrains reduce the number of independent

parameters for density dependence to three. In our study this model is represented

by the parameter set NL3*, and DD-ME2 given in tables 2.1, and 2.2.

Table 2.1: NL3* parameterization in RMF Lagrangian

parameter NL3∗
m 939
mσ 502.5742
gσ 10.0944
aσ 0.00000
bσ 0.00000
cσ 0.00000
dσ 0.00000
mω 782.600
gω 12.8065
aω 0.00000
bω 0.00000
cω 0.00000
dω 0.00000
mρ 763.000
gρ 4.5748
aρ 0.00000
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Table 2.2: DD-ME2 parameterization in RMF Lagrangian

parameter DD-ME2
m 939
mσ 550.1238
gσ 10.5396
aσ 1.3881
bσ 1.0943
cσ 1.7057
dσ 0.4421
mω 783.000
gω 13.0189
aω 1.3881
bω 0.9240
cω 1.4620
dω 0.4775
mρ 763.000
gρ 3.6836
aρ 0.5647

2.2.3 The point-coupling model

The point-coupling model is another way to construct a relativistic density

function. In this model the mesons exchange replaced by interaction between

the nucleons. Nonlinear point-coupling models have been applied successfully to

describe infinite nuclear matter [64, 65].

The Lagrangian for the density point coupling model is given by :

L = ψ̄ (iγµ · ∂µ −m)ψ − 1

2
αS(ρ̂)

(
ψ̄ψ
) (
ψ̄ψ
)
− 1

2
αV (ρ̂)

(
ψ̄γµψ

) (
ψ̄γµψ

)
− 1

2
αTV (ρ̂)

(
ψ̄~τγµψ

) (
ψ̄~τγµψ

)
− 1

2
δS
(
∂vψ̄

) (
∂vψ̄

)
− eψ̄γ · A(1− τ3)

2
ψ (2.21)
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Table 2.3: DD-PC1 parameterizations in RMF Lagrangian

parameter DD-PC1
m 939
aσ -10.04616
bσ -9.15042
cσ -6.42729
dσ 1.37235
aω 5.91946
bω 8.86370
dω 0.65835
bρ 1.83595
dρ 0.64025

It contains the free-nucleon Lagrangian, the point-coupling interaction terms. The

derivative terms accounts for the leading effects of finite-range interaction [66].

This model contains isosclar-scalar, isoscalar-vector, and isovector-vector. It is

represented by the DD-PC1 as has been seen in table(2.3).

2.3 The Hamiltonian and the equation of motion

From the Lagrangian density in Eq.(2.14), the Hamiltonian operator is :

H =

∫
∂3r(

∑
m

Pm − ∂tφm − L(r)) (2.22)
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where : φm = (ψ, σ, ωµ, ~ρµ, Aµ) Pm is the momentum conjugate operator

Pm =
∂L

∂(∂φm/∂t)
(2.23)

The Hamiltonian density of the nucleon - mesons interacting is

H = Hψ +Hσ +Hω +Hρ +HA +Hint (2.24)

where:

Hψ = ψ̄(α · p+ βm)ψ (2.25)

Hσ = −1

2
σ∆σ + Uσ(σ) (2.26)

Hω =
1

2
ωµω

µ − Uω(ω) (2.27)

Hρ =
1

2
~ρµ∆ ~ρµ − Uρ(ρ) (2.28)

HA =
1

2
AµA

µ (2.29)

Hins = (gσσψ̄ψ + gωωµψ̄γ
µψ + gρ ~ρµψ̄γ

µ~τψ + e(
1− τ3

2
)Aµψ̄γ

µψ) (2.30)
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In the Haretree method, the stationary Dirac equation for the nucleons is :

ĥDψi = εiψi (2.31)

where hD is the Hamiltonian of the nucleons with mass m

ĥD = α(−i∇− V (r)) + V0(r) + β(m+ S(r)) (2.32)

the Hamiltonian contains the attractive scalar field S(r)

S(r) = gσσ(r) (2.33)

and the repulsive time like component of the vector V0(r)

V0(r) = gωω0(r) + gρτ3ρ0(r) + e
1− τ3

2
A0(r) (2.34)

and the magnetic potential V(r)

V (r) = gωω(r) + gρτ3ρ(r) + e
1− τ3

2
A(r) (2.35)

Note that in these eqnarray, the four-vector components of the vector field (ωµ, ρµ, Aµ)

are separated into the time-like (ω0, ρ0, A0) and the space-like components [ω =

(ωx, ωy, ωz), ρ = (ρx, ρy, ρz), A = (Ax, Ay, Az) ].
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The corresponding mesons Fields and the electromagnetic field are determined by

the Klein-Gordon equations:

(−∇2 +m2
σ)σ(r) = −gσρs(r)− g2σ2(r)− g3σ3(r) (2.36)

(−∇2 +m2
ω)ω0(r) = gωρν (2.37)

(−∇2 +m2
ω)ωµ(r) = gωjµ (2.38)

(−∇2 +m2
ρ)ρ0(r) = gωρ3 (2.39)

(−∇2 +m2
ρ)~ρµ(r) = gρ~jµ (2.40)

−∇2A0(r) = eρp(r) (2.41)

−∇2Aµ(r) = eρpµ(r) (2.42)

with source terms involving the various nucleonic densities and currents

ρs(r) =
N∑
i=1

ψ̄i(r)ψi(r) (2.43)
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ρν(r) =
A∑
i=1

ψ+
i (r)ψi(r) (2.44)

ρ3(r) =
A∑
i=1

ψ+
i (r)τ3ψi(r) (2.45)

ρp(r) =
A∑
i=1

ψ+
i (r)(

1− τ3
2

)ψi(r) (2.46)

jµ(r) =
A∑
i=1

ψ̄i(r)γµψi(r) (2.47)

~jµ(r) =
A∑
i=1

ψ̄i(r)γµ~τψi(r) (2.48)

In the ground-state solution for an even-even nucleus spatial vector A(r) is ne-

glected in the calculations, because the coupling constant of the electromagnetic

interaction is small compered with the coupling constant of the mesons, and there

are no currents (time-reversal invariance) [56].

The components of the vector ω and ρ mesons lead to the interactions between

possible currents. For the ω meson the interaction is attractive for all combinations

(pp, nn, pn), and for ρ mesons it is attractive for pp and nn currents but repulsive

for pn currents [57]. The shape coexistence in CDFT framework depends on the
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spatial components of ω meson, so there are only two parameters (the mass mω

and the coupling constant gω) of the ω meson define the properties of the shape

coexistence [Eqs.(2.35, 2.38, 2.40)].

The solution of the CDFT equations corresponds to the ground state of the nucleus

it is corresponding to a local minimum in the potential energy surface, so to obtain

the solution for any point we used the constrained of quadrupole mass moment.

The constrained calculations are performed by imposing constraints on both axial

and triaxial mass quadrupole moments [2]. The method of quadratic constraints

uses an unrestricted variation of the function

〈Ĥ〉+
∑
µ=0,2

C2µ(〈Q̂2µ〉 − q2µ)
2

(2.49)

where 〈Ĥ〉 is the total energy, (〈Q̂2µ〉 denotes the expectation values of mass

quadrupole operators,

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2 (2.50)

where: q2µ is the constrained value of the multipole moment.

C2µ is the corresponding stiffness constant.∑
µ=0,2 λµQ̂2µ is the quadratic constraint adds an extra force term to the system

whereλµ = 2C2µ(〈Q̂2µ〉 − q2µ)
2

This term is necessary for self consistent solution to force the system to a point in

deformation space different from a stationary point. [2]
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2.4 Pairing correlations

The BCS theory which can accommodate the pairing correlations in the

ground states of atomic nuclei are presented [67, 68]. In mean field theory, The rel-

ativistic Hartree-Fock-Bogolibov model provides a description to particle-particle

(pp) correlation used by pairing field potential ∆̂, and particle-hole (ph) correla-

tion by self consistent field potential.

We take |φ > is the Slater determinate that represents the vacuum with quasi-

particle [69], and the αk, α
+
k is the single-nucleons creation and annihilation oper-

ator which:

αk =
∑
n

UnkC
+
n + VnkCn (2.51)

where n is the index refers to original basis, and U,V are the Hartree - Bogoluibove

wave function determined by variational method.

In the presence of pairing the single-particle density matrix is generalized to two

densities: the normal density ρ̂ and parity tensor K̂

ρnn′ =< φ|C+
n Cn|φ > (2.52)

Knn′ =< φ|CnCn|φ > (2.53)
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The total density functional is :

ERHB = ERMF [ρ] + Epair[k] (2.54)

where

ERHB[ψ, ψ̄, σ, ωµ, ~ρµ, Aµ] =

∫
d3rH(r) (2.55)

ERMF =
A∑
i=1

∫
d3rψ+

i (αp+ βm)− 1

2
(∇A)2 +

1

2
e

∫
d3rjµpAµ +

1

2

∫
d3r[αsρ

2
s + ανjµj

µ + αTV ~jµ · ~jµ + δρsρs] (2.56)

and the Epair[k] is

Epair[k] =
1

4

∑
n1n1

′

∑
n2n2

′

Kn1n
′
1
< n1n1

′|V PP |n2n2
′
> Kn2n2

′ (2.57)

where < n1n
′
1|V PP |n2n

′
2 > is the matrix element of the two body interaction.

V pp(r1, r2, r
′

1, r
′

2) = −Gδ(R−R′
)P (r)P (r

′
) (2.58)

R =
1√
2

(r1 + r2) (2.59)

r =
1√
2

(r1 − r2) (2.60)
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P (r) = (
1

4πa2
)3/2 exp

−r2

2a2
(2.61)

The RHB-coefficients U and V are obtained by the variational :

 hD −m− λ ∆

−∆∗ −hD +m+ λ


 UK

VK

 = EK

 UK

VK

 (2.62)

In (RMFT) the single nucleons has Dirac Hamiltonian hD is a given in Eq.(2.31),

λ is the chemical potential, m is the mass of nucleons, and ∆ is the pairing field

which is :

∆n1n
′
1

=
1

2

∑
n2n

′
2

< n1n
′

1|V PP |n2n
′

2 > Kn2n
′
2

(2.63)

and

 UK

VK

 (2.64)

it is an eignvector.

2.5 Nuclear shape and deformation

The deformation of the ground state(the nuclear shape), is one of the most

fundamental properties of an atomic nucleus, along with its mass and radius. A
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nucleus may take different shapes varying from spherical to quadrupole (prolate,

oblate), and higher order multipole deformations [70].

The instantaneous coordinate R(t) of a point on the nuclear surface at (θ, φ) in

terms of the spherical harmonics :

R(θ, φ) = Ravg[1 +
∑
λ

λ∑
µ=−λ

αλµYλµ(θ, φ)] (2.65)

In the first case when (λ = 0), that gives the monopole, and λ = 1, it is give

the dipole deformation, but the important point for our study is when (λ = 2),

which give the quadrupole deformation. For a quadruple-deformed nucleus with

elliptical shape we can distinguish a coordinate frame defined by the three axes

of deformation. For example we can define the long axis as z, the short axis as

x and the intermediate axis as y (other choices are allowed as well). In this case

we have five parameters αλµ , and this five parameters can be reduced to two real

parameters α20, α22. We defined Hill-Wheeler coordinate in terms of α20 and α22

α20 = β · cos γ (2.66)

α22 =
1√
2
β · sin γ (2.67)

We can connect the quadrupole constraint (2.50) with β, γ

β =

√
4π

5

Q

r2
(2.68)
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where

Q =
√
Q2

20 +Q2
22 (2.69)

γ = tan−1(
Q22

Q20

) (2.70)

If we substitute Eqs .2.66,2.67 in Eq .2.65, then we obtain :

R(θ, φ) = Ravg[1 + β

√
5

16π
(cos γ(3 cos2 θ − 1) +

√
3 sin γ sin2 θ cos 2φ)] (2.71)

Then we can calculate the increments of the three semi-axes as a function of β

and γ

Rx = R(
π

2
, 0) = Ravg · [1 + β ·

√
5

4π
· cos(γ − 2π

3
)] (2.72)

Ry = R(
π

2
,
π

2
) = Ravg · [1 + β ·

√
5

4π
· cos(γ +

2π

3
)] (2.73)

Rz = R(0, 0) = Ravg · [1 + β ·
√

5

4π
· cos(γ)] (2.74)

The shape can have axial symmetry, that in the nucleus have an ellipsoid shape and

elongated along one of the axis. If it elongated along z-axis it will be prolate axial,

and the perpendicular cross section is circular. In the case where the perpendicular

cross section is not circular, then the shape of nucleus will be triaxial[71, 72]. In

general if γ is a multiple of 60◦ then the shape is axial, and when γ is not a multiple

of 60 it will be triaxial. Thus when γ is a multiple of 60◦ then the radius along

two of the three axis in Eqs. 2.72, 2.73, 2.74 are equal. As we can see :
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If γ = 0, the symmetry axis is Z axis, and Rx = Ry.

If γ = 60, the symmetry axis is Y axis, and Rx = Rz.

If γ = 120, the symmetry axis is X axis, and Ry = Rz .
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Chapter 3

Ge isotopes

In this chapter we will calculate the axial potential energy curves (PEC), tri-

axial potential energy surfaces (PES), and from their results we will locate the

deformation of the ground state. Physical properties as a function of neutron

number for even - even Ge (Z = 32, 34 ≤ N ≤ 62) isotopes will be studied. The

axial calculations are performed using NL3*, DD-ME2, and DD-PC1 parameter-

izations, while the triaxial calculations are performed using NL3*, and DD-PC1

parameterizations.

3.1 Potential energy surface

In this section we perform constrained calculations on β (Eq. 2.68) and γ

(Eq.2.70). If γ is constrained to 0o we obtain the axial potential energy curves. If

the value of γ is varied between 0o and 60o for each value of β then we will obtain
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the potential energy surfers as a function of both β and γ which will allow us to

determine if there is a triaxial ground state minimum. Our results are compared

with those obtained from relativistic Hartree-Fock-Bogolibouve within Gogny -

D1S [52], and interacting bosons model (IBM) based on Gogny - D1M [46].

3.1.1 Axial symmetry

The ground state of Ge isotopes are confirmed to be oblate and prolate by

experimental data on energy spectra and charge radii [73], but spherical low -lying

minima are observed for N < 110.

Figs.3.1, and 3.2 show the calculated potential energy curves for Ge(Z =32, 34 ≤

N ≤ 62) isotopes. From these figures, one can see that these isotopes can be

classified into three categories according to their ground state deformation. The

first category contains isotopes that has only one minimum, namely 70,76,80,82Ge.

70Ge has an oblate minimum at β = 0.2, but 76,80Ge have a prolate minimum at

β = 0.2. On other hand 82Ge has only spherical shape(β = 0).
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Figure 3.1: Potential energy curves of even-even Ge isotopes for neutron num-
ber 34 ≤ N ≤ 50 as functions of the quadrupole deformation, obtained from an
axial RHB calculations with constrained quadrupole deformation. The effective
interactions used are NL3*, DD-ME2, and DD-PC1. The curves are scaled such

that the ground state has a zero MeV energy
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Figure 3.2: Similar to Fig. 3.1 but for neutron number 52 ≤ N ≤ 62
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The second category contains isotopes that has two minima, namely 66,68,84,86,90,92,94Ge.

In 66,90Ge the ground state has two shapes (prolate and oblate) located at |β| =

0.25. Is similarly in 68Ge there are two minima, the first minimum is a prolate

located at β = 0.25, and the second minimum is an oblate at β = 0.2. However,

the prolate minimum is less pronounced. Also84Ge has a prolate, and oblate min-

ima at |β| = 0.15, but in 86,88Ge the prolate and oblate minima becomes more

pronounced with |β| = 0.2. In 92,94Ge exhibits coexisting prolate with minimum

at β = 0.2, and oblate at β = 0.25.

The third category contains isotopes that has a flat minima, that is mean the

energy does not vary with β2 in a ceratin region of PEC such as 74Ge. Finally, in

some nuclei there is a one minimum behind the flat minima such as in 72,78Ge, and

this minima could be a prolate or oblate.

In Fig. 3.3 we show the ground state deformation for all categories extracted

from Figs.3.1, and 3.2, and for D1S in taken from ref. [52]. For a prolate and

oblate minima, the results are almost in full agreement with small deviation in

the location of their minima. However, there is a a disagreement between our

results in the D1S ref. [52] results, that is we only predict a prolate minimum for

76,78,80Ge, while they predict an oblate one too.
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3.1.2 Triaxial symmetry

We perform constrained calculations on Q20, Q22 using NL3*, and DD-PC1

parameterizations. Potential energy surfaces (PES) are shown in Fig 3.4. In Fig.

3.4 one can see that 66Ge has two minima at β = 0.25, one of them is an oblate,

and the other is a triaxial with γ = 45. The oblate minimum is the global. The

shape of ground state in 68Ge and 70Ge becomes almost a triaxial at γ = 55 and

an oblate at γ = 60, respectively, and both of them nuclei has only one minimum

as we move along the isotopic chain into 72Ge we will have two minima (spherical,

and oblate at β = 0.2) with energy different 0.18 MeV, and the deepest one is

the spherical minima. One can see that there is a sudden change in the ground
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Figure 3.4: Potential energy surfaces of even-even Ge isotopes from neutron number
(34 ≤ N ≤ 62) as functions of the quadrupole deformation, obtained from an triaxial
RHB calculations with constrained quadrupole deformation. The effective interactions
used are NL3*. The surfaces are scaled such that the ground state has a zero MeV

energy

state deformation. In 74Ge the minimum is a triaxial at β = 0.25, and γ = 30.

For 76,78,80,84Ge the global minimum is a prolate and the value of β2 is decreasing

from 0.2 to 0.15 leading to a spherical shape for 82Ge, and in 86,88,90,92,94Ge there

is triaxial minimum with β = 0.25 and γ = 20, 25, 30, 40, 45 respectively as we see

in table.(3.1).

In Fig. 3.5, and table 3.2 DD-PC1 results are presented, and no significant dif-

ference from the results obtained with NL3* was found, expect the different in
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Table 3.1: Location of the two ground state minima indicated by (β0, γ0) for
Ge isotopes using NL3* parameterization. The first minimum is the deepest

minimum

Nucleus first minimum (β0, γ0) second minimum (β0, γ0) ∆ E
66Ge (0.25,60◦) (0.25,45◦) 0.56
68Ge (0.3,55◦) − −
70Ge (0.2,60◦) − −
72Ge (0.00,0◦) (0.2,60◦) 0.18
74Ge (0.25,30◦) − −
76Ge (0.2,0◦) − −
78Ge (0.2,0◦) − −
80Ge (0.15,0◦) − −
82Ge (0.00,0◦) − −
84Ge (0.15,0◦) − −
86Ge (0.25,20◦) − −
88Ge (0.25,25◦) − −
90Ge (0.25,30◦) (0.25,60◦) −
92Ge (0.25,40◦) − −
94Ge (0.25,45◦) − −

Table 3.2: As table (3.1), but using DD-PC1 parameterization. The first
minimum is the deepest minimum

Nucleus first minimum (β0, γ0) second minimum (β0, γ0) ∆ E
66Ge (0.25,60◦) (0.25,45◦) 1.78
68Ge (0.25,55◦) − −
70Ge (0.20,60◦) − −
72Ge (0.00,0◦) (0.20,60◦) 2.82
74Ge (0.25,30◦) − −
76Ge (0.20,0◦) − −
78Ge (0.2,0◦) − −
80Ge (0.15,0◦) − −
82Ge (0.00,0◦) − −
84Ge (0.20,0◦) − −
86Ge (0.25,20◦) − −
88Ge (0.25,25◦) − −
90Ge (0.25,30◦) (0.25,60◦) 0.08
92Ge (0.25,40◦) − −
94Ge (0.25,45◦) − −



35

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

66Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

1

2

3

4

68Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

1

2

3

4

5

70Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

72Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

8

74Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

8

76Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

8

10

78Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

8

10

80Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

8

10

12

82Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

8

10

84Ge

 (deg)
0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

8

10

86Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

8

88Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

90Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

6

92Ge

 (deg)

0

10

20

30

40
50

60

0.0 0.2 0.4

2

0

2

4

94Ge

 (deg)

Figure 3.5: Similar to Fig. 3.4, but within DD-PC1 parametrization

energy between two minima in 66,72,90Ge. This difference will not affect the bind-

ing energy, and the binding energy per nucleon, but will differently affect the two

neutron separation energy, neutron, and proton radii as will be shown later. As

we see in pervious tables the ground state shape is found to be both oblate and

prolate 66Ge, spherical and oblate for 72Ge and triaxial and oblate for 90Ge.
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Also the shape of ground state are presented within interacting boson model (IBM)

based on Gogny - D1M parametrization taken from [46] and shown in table3.3. It

shows that 66Ge has two minima (oblate with β = 0.25 and triaxial with β = 0.25,

and γ = 45). The triaxial minimum is the global. The shape of ground state in

68Ge become a triaxial, and it is minimum at β = 0.25, and γ = 45. One can see

there is a soft change in the ground state deformation. In 70Ge the minimum is

an oblate at β = 0.2, then the shape of ground state has two minima, one of them

is spherical, and the other one is an oblate minima at β = 0.2. The spherical is

the deepest minima. In 74Ge there is a triaxial minimum at β = 0.15, and γ = 45.

For 76,78,80,84,86,88Ge as the same calculations from NL3*, and DD-PC1, the global

minimum is a prolate and the value of β2 is decreasing from 0.25 to 0.15 leading

to a spherical shape for 82Ge. Finally, the shape of ground state has two minima

differ minima from NL3*, and DD-PC1, the deepest one is an oblate at β = 0.2,

and the other one is a prolate minimum at β = 0.2 , then the shape is change in

soft to triaxial minimum at β = 0.25, and γ = 35, 45 in 90,92Ge respectively.
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Table 3.3: As table (3.1), but using IBM based on D1M parameterizations
taken from [46]

Nucleus first minimum (β0, γ0) second minimum (β0, γ0)
66Ge (0.25,55◦) (0.25,0◦)
68Ge (0.25,50◦) −
70Ge (0.2,60◦) −
72Ge (0.00,0◦) (0.2,60◦)
74Ge (0.15,45◦) −
76Ge (0.15,0◦) −
78Ge (0.2,0◦) −
80Ge (0.15,0◦) −
82Ge (0.00,0◦) −
84Ge (0.15,0◦) −
86Ge (0.2,0◦) −
88Ge (0.25,0◦) −
90Ge (0.25,60◦) (0.2,0◦)
92Ge (0.25,35◦) −
94Ge (0.25,40◦) −
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3.2 Physical properties

Physical properties are often referred to as observables that can be measured

experimentally, such as binding energy, two neutron separation energy, neutron,

proton, and charge radii. The binding energy is calculated from axial symmetry,

and triaxial symmetry, while neutron, proton, and charge radius are calculated

from triaxial symmetry.

3.2.1 Binding and two neutron separation energies

Binding energy is defined as the minima energy needed to put the nucleons

together. In Fig. 3.6, we have plotted the binding energy corresponding to the

ground state of the Ge isotopes whether it is prolate or oblate. For both prolate and

oblate shapes, the results are independent from the choice of parameterizations.

However, there is one main deviation at 72Ge, where the DD-PC1 results shows

higher value of binding energy. This deviation is due to the sudden transition

from oblate in 72Ge to a flat minima (In axial calculations), which appears as

triaxial minima from triaxial calculations in 74Ge. In general, there is a very good

agreement between our results and the results obtained with D1S [52], so for 68Ge

to 78Ge D1S has very close values from our calculated energies, and after 80Ge
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there is small deviations between our results and the results obtained from D1S,

this difference increase as well as the neutron number is increased. The theoretical

binding energies within NL3*, DD-ME2, DD-PC1, and D1S parameterizations are

in agreement with experimental data [52].

In Fig. 3.7, and 3.8 the binding energy is plotted as a function of mass number.

It was obtained from triaxial calculations, and corresponding to prolate, oblate,

and triaxial minima. As we see before, there are some nuclei have a flat minima in

axial calculation such as 72,74,78Ge. We can not determined the binding energies for

these nuclei in axial symmetry, but the triaxial calculations predict it is binding

energies.

In Fig. 3.9 the binding energy per mass number (A) is plotted as a function of

neutron number. It was obtained from triaxial calculations, and corresponding to

global minima. The results are independent from the choice of parameterizations.

That is mean there is no main deviation between NL3* and DD-PC1 calculations.

The theoretical values from NL3*, and DD-PC1 parameterizations agree with

experimental data from [74] with small deviation, and this deviation does not

exceed 1 Mev.
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Figure 3.6: Binding energy for even-even Ge isotopes in axial symmetry using
NL3* (Circles), DD-ME2 (Squares), DD-PC1 (Up triangle) , D1S [52] (Down
triangle), and Experimental data (Plus) [52] as a function of mass number (A)
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Figure 3.7: Binding energy for even-even Ge isotopes in triaxial symmetry for
prolate, and oblate minima using NL3* (Circles), DD-PC1 (Up triangle) as a

function of mass number (N)
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The two neutrons separation (S2n) is the energy needed to remove two neutrons

from a nucleus, and it is given by :

S2n(N) = BE(AZXN)−BE(AZXN−2) (3.1)

The two neutron septation energy is plotted as a function of neutron number(N)

in Fig. 3.10. One can notice a smooth change in S2n with N, expect for N = 50,

where we can see a sharp change in S2n. This sharp jump can be attributed to two

factor: The first one is due to the magic number N = 50, which as we know that

separation energy increase near magic numbers. The second factor is the sudden

change in the ground state shape from prolate in 76,78,80Ge (N = 46, 48, 50) to

spherical in 82Ge (N=52). There is good agreement between our calculations and

the results obtained in experiments [74].

3.2.2 Neutron, proton and charge radius

Fig. 3.11 show that the radius of neutron and proton obtained from NL3*, and

DD-PC1 parameterizations are agreement with each other with small deviation.

One can notice there is no significant difference between the radius of neutron,

and proton obtained from NL3*, and DD-PC1. However there is a sharp change
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Figure 3.10: Two separation energy for even-even Ge isotopes using NL3*
(Circles), DD-PC1 (Squares) , and experimental data [74] (Up triangle) as a

function of neutron number (N)

in both neutron radius (Rn), and proton radius (Rp) at N=50. This sharp can

be attributed to the sudden transition from from spherical in 82Ge (N=50) to

deformed shape in 84Ge (N=52). Also one can see that a sudden transition from

spherical shape in the ground state to triaxial shape at N=42 is reflected in a

sharp change in the radius of proton.

NL3* predicts larger values of Rp compared with the once obtained using DD-PC1

at N=36. This difference coming from the different location of the ground state

minimum. This ground state has triaxial minimum with β = 0.3, and γ = 55

by NL3*, whereas DD-PC1 predicts it has triaxial minimum with β = 0.25, and

γ = 55.
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NL3* (Circles), DD-PC1 (Squares) , as a function of neutron number (N)
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One of the most fundamental properties of atomic nuclei is the nuclear charge

radius. It plays a key role in studying the characters of nucleus and testing theo-

retical models of nuclei. It is calculated by this formula :

Rc =
√
R2
p + 0.64 (3.2)

Where is 0.64 is related to the finite volume of the proton (volume correction).

Fig. 3.12 show the charge radius for Ge isotopes. One can notice because there is

a smooth transition in the ground state deformation at N = 44 to N = 62 will be

seen as a smooth evolution for Rc. On the other hand, a sharp change in the Rc at

N = 36, N = 42 and N = 52. This sharp attributed to a sudden change of ground

state shape from prolate at N = 34 to triaxial shape at N = 36, also a sudden

change from spherical at N=40 to deformed shape (triaxial) at N = 42. Moreover,

there is a sudden transition in the shape of ground state from spherical in 82Ge

(N = 50) to deformed shape in 84Ge (N = 52). The charge radius obtained from

NL3* are agreement with ones from DD-PC1, expect at N = 36. One can see that

the value of charge radius of proton (Rc) change suddenly at N = 36 by NL3*,

whereas it is change smoothly by DD-PC1. This change suddenly referred to same

reason of proton sharp change suddenly.
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Chapter 4

Se isotopes

In this chapter we will analyze the same calculations as we did in pervious

chapter, but for even-even Se (Z = 34, 34 6 N 6 62) isotopes. The axial calcula-

tions are performed using NL3*, DD-ME2, and DD-PC1 parameterizations, while

the triaxial calculations are performed using NL3*, and DD-PC1 parameteriza-

tions.

4.1 Potential energy surface

In this section we perform constrained calculations on β (Eq. 2.68) and γ

(Eq.2.70), and obtain the potential energy curves in axial, and triaxial calculations

for Se isotopes. The results are compared with potential energy curves obtained

from relativistic Hartree-Fock-Bogolibouve within Gogny- D1S [52], and potential
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energy surfaces obtained from interacting bosons model (IBM) based on Gogny-

D1M [46].

4.1.1 Axial symmetry

From potential energy curves (PEC) calculations shown in Figs. 4.1, and

4.2 one can see that these isotopes can be classified into three categories. The

first category contains isotopes that has only one minimum, namely 80,82,84Se.

80Se has a prolate minimum at β = 0.2, and similarly in 82Se there is a prolate

minimum at β = 0.15, however, the prolate minimum less pronounced. Then the

shape of ground state becomes a spherical in 84Se. The second category contains

isotopes that has two minima, namely 68,70,78,88,90,92,94,96Se. 68,70Se have a two

minima (prolate and oblate)at |β| = 0.25, it is similarly in 76,78Se there are two

minima, one of them is a prolate at β = 0.2, and the other minima is an oblate

at β = 0.15, also the shape of ground state has a prolate and oblate with minima

at |β| = 0.2 in 88Se, and in 90,92,94,96Se have a prolate and oblate with minima

at |β| = 0.25. The third category contains isotopes that has flat minima such as

74,86Se. Finally, 72Se may be has one minima or flat, and this minima could be a
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Figure 4.1: Similar to Fig. 3.1, but for even-even Se isotopes from neutron
number 34 6 N 6 50
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Figure 4.2: Similar to Fig. 4.1, but from neutron number 52 6 N 6 62

prolate or oblate.
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In Fig. 4.3 we show the ground state deformation for all categories extracted from

Figs.4.1, and 4.2, and for D1S in taken from ref. [52]. Both prolate and oblate

minima obtained from NL3*, DD-ME2 and DD-PC1 parametrization agree with

the results obtained from D1S in [52] with small deviation in the location of their

minima. For example our calculations predict a prolate minima with β = 0.2 in

76Se, whiles D1S predicts a prolate minima with β = 0.1.

4.1.2 Triaxial symmetry

Fig 4.4, and table.3.1 shown 68,70,74Se have two minima, both of these minima

is axial. In 68Se one of them is oblate with β = 0.25 and the other is prolate with
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β = 0.25, and the energy difference between them equal 0.37 MeV. In 70Se the first

minimum is oblate with β = 0.3, and the other minimum is prolate with β = 0.25.

The deepest minimum is the oblate. In 74Se the deepest minimum is an oblate with

β = 0.2, and the other minimum is spherical, with energy difference between them

0.27 MeV. The shape of ground state has one minimum in 72,76,78,80,82,84,86Se, this

minimum is prolate at β = 0.25 in 72Se, and it is an oblate in 76,78,80,82,86Se with

different β varying from 0.15 to 0.2. In 84Se the shape of ground state becomes

suddenly spherical. However, the shape of ground state has two minima in 88Se ,

the deepest one is an oblate with β = 0.2, and the other is a prolate with β = 0.2.

Finally, in 90,92,94,96Se there is two minima, the deepest one is a prolate minima

with β = 0.25, and the other minima is an oblate with β = 0.25.
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Figure 4.4: Similar to Fig. 3.4, but for Se isotopes using NL3*
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Table 4.1: Location of the two ground state minima indicated by (β0, γ0) for
Se isotopes using NL3* parameterization. The first minimum is the deepest

minimum

Nucleus first minimum (β0, γ0) second minimum (β0, γ0) ∆ E
68Se (0.25,60◦) (0.25,0◦) 0.37
70Se (0.3,60◦) (0.25,0◦) 1.07
72Se (0.25,60◦) − −
74Se (0.2,60◦) (0.00,0◦) 0.27
76Se (0.2,60◦) − −
78Se (0.15,0◦) − −
80Se (0.2,0◦) − −
82Se (0.15,0◦) − −
84Se (0.00,0◦) − −
86Se (0.15,60◦) − −
88Se (0.2,60◦) (0.2,0◦) 0.18
90Se (0.25,60◦) (0.25,0◦) 0.38
92Se (0.25,60◦) (0.25,0◦) 0.87
94Se (0.25,60◦) (0.25,0◦) 0.92
96Se (0.25,60◦) (0.25,0◦) 1.10

Fig. 4.5, and table. 4.2 shown the minima of ground state by DD-PC1 parametriza-

tion, and it is agreement with the results from NL3* calculations, expect in

86,88,90Se. NL3* predicts only a prolate minimum for the ground state in 86Se,

but DD-PC1 shown there is two minima, one of them is prolate with β = 0.15,

and the other is an oblate with β = 0.15. The oblate minimum is the deepest

one. In 88Se the deepest minimum obtained from NL3* is prolate with β = 0.2,

whiles the deepest minimum obtained from DD-PC1 is an oblate minimum with

β = 0.2. In 90Se, both parameterizations (NL3*, and DD-PC1) predicts two min-

ima for the ground state shape, but the absolute minima obtained from NL3* it is
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a prolate, and it is an oblate by DD-PC1. Also NL3* predict the energy difference

between two minima in 68,70,74,88,90,92,94Se are 0.37, 1.07, 0.27, 0.18, 0.38, 0.87, 0.92,

1.10 MeV respectively, but DD-PC1 predict it is 0.33, 1.42, 0.08, 0.14, 0.24, 0.55,

0.40, 0.01 MeV. This difference affect the binding energy per nucleon, two neutron

separation energy, neutron, and proton radius as will be shown later.

As we notice in Table. 4.3 the minima investigated within interacting boson model

(IBM) based on Gogny-D1M parametrization taken from [46] are agreement with

our results, with small difference in the location of minima, and it shows that

68,70Se has two minima (oblate with β = 0.25 and prolate with β = 0.25). The

oblate minimum is the global. One can see there is a soft change in the ground

state deformation. In 72Ge the minimum is an oblate at β = 0.2, then the shape

of ground state has two minima, one of them is spherical, and the other one is

an oblate minimum at β = 0.2. The spherical is the deepest minimum. In 76Se

there is an oblate minimum at β = 0.2. For 78,80,82,86Se as the same calculations

from NL3*, and DD-PC1, the global minimum is a prolate and the value of β2

is decreasing from 0.20 to 0.15 leading to a spherical shape for 84Se. The shape

of ground state has two minima in 90,92,94,96Se. The deepest one is a prolate at

β = 0.25, and the other one is an oblate minimum at β = 0.25. One can see D1M
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Figure 4.5: Similar to Fig. 4.4, but using DD-PC1 parametrization

predicts triaxial minimum at β = 0.2, and γ = 25 in 84Se, while our calculations

predict the ground state has two minima (prolate and oblate).

The coexistence of two different shapes for Se isotopes in the ground state is better

seen as compared with Ge isotopes. It is clearly seen at the neutron deficient and

neutron rich sides of the isotopic chain. In the rest of the nuclei, the shape is

either oblate or spherical.
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Table 4.2: As table 4.1, but using DD-PC1 parameterization

Nucleus first minimum (β0, γ0) second minimum (β0, γ0) ∆ E
68Se (0.25,60◦) (0.25,0◦) 0.33
70Se (0.30,60◦) (0.25,0◦) 1.42
72Se (0.25,60◦) − −
74Se (0.25,60◦) (0.00,0◦) 0.08
76Se (0.25,60◦) − −
78Se (0.15,0◦) − −
80Se (0.2,0◦) − −
82Se (0.15,0◦) − −
84Se (0.00,0◦) − −
86Se (0.15,0◦) (0.15,60◦) 0.19
88Se (0.2,0◦) (0.20,60◦) 0.14
90Se (0.25,0◦) (0.25,60◦) 0.24
92Se (0.25,60◦) (0.25,0◦) 0.55
94Se (0.30,60◦) (0.25,0◦) 0.40
96Se (0.25,60◦) (0.25,0◦) 0.01

Table 4.3: As table 4.1, but using DIM parameterization taken from [46]

Nucleus first minimum (β0, γ0) second minimum (β0, γ0)
68Se (0.25,60◦) (0.25,0◦)
70Se (0.25,60◦) (0.25,0◦)
72Se (0.25,60◦) −
74Se (0.2,60◦) (0.00,0◦)
76Se (0.2,60◦) −
78Se (0.15,0◦) −
80Se (0.15,0◦) −
82Se (0.15,0◦) −
84Se (0.00,0◦) −
86Se (0.15,0◦) −
88Se (0.2,25◦) −
90Se (0.25,60◦) (0.25,0◦)
92Se (0.25,60◦) (0.2,0◦)
94Se (0.25,60◦) (0.2,0◦)
96Se (0.25,60◦) (0.2,0◦)
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4.2 Physical properties

One can relate the shape evolution of ground state seen in the pervious section

with the change in the value of several physical properties such as binding energy,

two neutron separation energy, neutron, proton, and charge radii. Where the shape

of ground state change smoothly this seen as smooth evolution of the physical

properties. On other hand, when the shape change suddenly this reflected as

a sharp jump in these properties. The binding energy in calculated from axial

symmetry, and triaxial symmetry, while neutron, proton, and charge radius are

calculated from triaxial symmetry.

4.2.1 Binding and separation energies

In Fig. 4.6 the value of binding energy obtained from NL3*, and DD-PC1 are

agree with the results obtained from D1S parametrization [52]. One can notice

there is no a sharp jump in the binding energy values, so the sudden change in

the ground state deformation do not affects the binding energy. Our calculations

are agreement with the experimental data [52].
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Figure 4.6: Similar to Fig. 4.6, but for Se isotopes
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Figure 4.7: Binding energy for even-even Se isotopes in triaxial symmetry
using NL3* (Circles), DD-PC1 (Up triangle) as a function of mass number (N)

In Fig. 4.7 the binding energy obtained from triaxial calculations is plotted as a

function of mass number. For both prolate and oblate the results are independent

from the choice of parameterizations. Also the binding energy obtained from axial

symmetry are agree with results obtained from triaxial symmetry.
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In Figure. 4.8 the binding energy per mass number (A) obtained from triaxial

calculations is plotted as a function of neutron number. There are agreement

between the energy obtained from NL3*, and DD-PC1 with small deviations.

However, there is three mean deviation at N = 52, 54, 56, when the DD-PC1

results shows higher value of binding energy. This deviation coming from the

different location of the ground state minimum. The ground state investigated by

NL3* has oblate minima, whiles DD-PC1 predicts it has prolate minima. One can

notice a sharp change in S2n at N=50. This sharp jump can be attributed to two

factor. The first one is due to the magic number N=50. The second factor is the

sudden change in the ground state shape from prolate in 76,78,80Se (N = 46, 48, 50)

to spherical in 82Ge (N = 52). The theoretical results obtained from NL3*, and

DD-PC1 parametrization are agreement partially with the experimental data [74].

One can see in Fig.4.9 the two neutron separation energy (S2n) for Se isotopes

obtained from NL3*, and DD-PC1 are agreement with each other. There is a

sharp change in S2n at N = 50 can be attributed to two factor. The first one

is due to the magic number N = 50, which as we know that separation energy

increase as near magic numbers. The second factor is the sudden change in the

ground state shape from spherical at N=50 to deformed shape at N=52. Our
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Figure 4.8: Binding energy per A for even-even Se isotopes in triaxial sym-
metry using NL3* (Circles), DD-PC1 (Squares) , and Experimental data (Up

triangle) [52] as a function of neutron number (N)

calculations are agreement with experimental data [74].

4.2.2 Neutron, and proton radius

There is a good agreement in Fig. 4.10 for both the radius of neutron and

proton obtained from NL3* and DD-PC1 parametrization. However, there is small

deviation when the NL3* results shows higher value of neutron radius. On the

other hand, the DD-PC1 shows higher value of proton radius. This different

attributed to the differs in shape evolution for ground state between NL3* and

DD-PC1.
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Figure 4.9: Two separation energy for even-even Se isotopes using NL3* (Cir-
cles), DD-PC1 (Squares) , and experimental data [74] (Up triangle) as a function

of neutron number (N)

Fig. 4.11 show the charge radius for Se isotopes. One can see there is a sharp

change in the Rc at N = 52. This sharp attributed to a sudden change of ground

state shape from prolate at N = 50 to spherical shape at N = 52. Also as we

know that the charge proton radius increase as near magic numbers, and N = 50

it is a magic number.
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Chapter 5

Conclusion

In this thesis relativistic Hartree-Fock-Bogoluibove model (RHFB) has been

successfully applied to investigate the shape coexistence and the physical proper-

ties such as binding, two neutron separation energies, neutron and proton radii in

ground state of Ge (Z = 32, 34 ≤ N ≤ 62) isotopes, and Se (Z =34, 34 ≤ N ≤ 62)

isotopes. The binding energy in calculated from axial symmetry, and triaxial sym-

metry are agreement with experimental data, and neutron, proton, and charge

radius are calculated from triaxial symmetry.

The potential energy curves for Ge and Se isotopes were plotted as a function of

deformation parameter β2 in axial calculations (Prolate shapes corresponding to

β2 > 0, and oblate shape corresponding to β2 < 0). We can notice the energy does
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not vary with β2 in a ceratin region of PEC such as in 72,74,78Ge (flat minima).

However, the triaxial potential energy surfaces (PES) predict there are two minima

in 72Ge, one of them spherical and the other is an oblate minima, wheals there

is one minima in 74,78Ge. This minima it is a triaxial in 74Ge and it is a prolate

in 78Ge. Similar plots were also done for Se isotopes. Shape coexistence manifest

itself in Se isotopes better than Ge isotopes, both oblate and prolate shapes are

found in the ground state for the neutron rich side of the isotopic chain. In the

Se isotopes one can see an oblate-prolate shape transition from 76Se to 78Se, and

prolate-spherical transition from 82Se to 84Se.

One can see that the smooth change in the ground state deformation is connected

with a smooth evolution of the physical properties in the ground state. The sharp

jump in most of the physical properties is observed at N = 50. This sharp jump

is due to the change of the ground state shape in the neighboring nuclei.

Our results are independent from the choice of parametrization, and it is in good

agrement with results obtained from other models.
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